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Clustering micropollutants and estimating rate constants of
sorption and biodegradation using machine learning
approaches
Seung Ji Lim 1,5, Jangwon Seo1,5, Mingizem Gashaw Seid 1, Jiho Lee1, Wondesen Workneh Ejerssa1,2, Doo-Hee Lee 3,
Eunhoo Jeong1, Sung Ho Chae 1, Yunho Lee4, Moon Son 1,2,6✉ and Seok Won Hong 1,2,6✉

Effluent from wastewater treatment plants is considered an important source of micropollutants (MPs) in aquatic environments.
However, monitoring MPs in effluents is often inefficient owing to the variety in their types. Thus, this study derived marker
constituents to estimate the behavior of MPs in each cluster using the self-organizing map (SOM), a machine learning-based
clustering analysis method. In SOM analysis, the physicochemical properties, functional groups, and the initial biotransformation
rules of 29 out 42 MPs were used to ultimately estimate the degradation rate constants of 13 MPs. Consequently, when the
physicochemical properties and functional groups were considered, SOM analysis showed outstanding performance to label MPs
with an accuracy value of 0.75 for each aerobic and anoxic condition. Based on the clustering results, 11 MPs were determined to
be marker constituents under each aerobic and anoxic condition. Moreover, an estimation method for the rate constants of
unlabeled MPs was successfully developed using the identified markers with the random forest classifier. The proposed algorithm
could estimate both sorption and biotransformation of MPs regardless of dominant removal mechanisms, whether the MPs were
removed by sorption or biotransformation. An accuracy of 0.77 was calculated for estimating rate constants under both aerobic and
anoxic conditions, which is remarkably higher than those reported previously. The proposed procedure could be extended further
to efficiently monitor MPs in effluents.
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INTRODUCTION
Domestic and industrial chemicals, such as pharmaceuticals,
personal care products, steroids, estrogens, pesticides, and
surfactants have become essential for modern living. More than
350,000 chemicals have been registered and used worldwide from
2010 to 20191. It was also reported that global medicine
consumption in 2020 was estimated to be 4.5 trillion doses2.
Most or some of these chemicals flow into wastewater treatment
plants (WWTPs), but are not completely degraded3,4. These
undecomposed chemicals can adversely impact aquatic ecosys-
tems, when discharged from the WWTPs5. To assess the impact
and potential risks of these unwanted chemicals, called micro-
pollutants (MPs), frequent and accurate monitoring of effluent
from WWTPs is a crucial requirement. However, periodic monitor-
ing of MPs is expensive and labor-intensive.
Rather than monitoring individual MPs, monitoring a grouping

of them is more efficient because it can reduce the number of
samples to be monitored by providing the group representative
values6,7. For example, one study selected caffeine, which is widely
available in food, drinks, and pharmaceuticals, as a marker for
evaluating the degree of aquatic ecosystem contamination by
untreated wastewater8. The concentration of caffeine in untreated
wastewater is orders of magnitude higher than that in treated
water from WWTPs due to the high removal efficiency of caffeine
during wastewater treatment in general (>99%). Therefore, rather
than detecting individual MPs, solely monitoring the caffeine

concentration was sufficient for assessing anthropogenic contam-
ination9. Similar to the monitoring of MPs in the aquatic
ecosystem, their monitoring in WWTPs would be significantly
simplified if a representative marker for each group of MPs is
selected prior to analyzing the concentration of all MPs.
Several clustering analyses have been attempted in order to

identify similarities among MPs and increase the prediction
accuracy of their behavior. One example is the dendrogram,
which is often employed to generate a graphical representation
exhibiting the trends of biodegradation rate constants associated
with solid retention time10,11. Recently, the clustering of MPs using
initial biotransformation rules was also introduced using the
Eawag pathway prediction system (Eawag-PPS)12,13. Although
these clustering methods are suitable (i.e., wide range of
applications or explainable clustering), they contain issues that
need to be addressed. For instance, the dendrogram provides
insufficient information for interpreting the clustering results since
it represents clustering results on the one-dimensional graph.
While the clustering with the biotransformation rule is more
explainable, it often shows insufficient prediction accuracy
because it lacks detailed chemical characteristics such as
functional groups14.
To address the aforementioned limitations of conventional

clustering analyses, this study proposed a novel approach for
determining markers based on the clustering results and
estimation of the following: the rate constants of MPs, biological
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degradation rate (kbio), and sorption coefficients (Kd); these were
determined based on classification and the identified markers.
When clusters are established, a marker MP in each cluster can
potentially provide information on the behavior, i.e., rate
constants, of other MPs in the same cluster. For this purpose,
sequential analyses of the self-organizing map (SOM) and random
forest classifier (RFC) methods were implemented for analyzing
the dataset of 42 MPs consisting of physicochemical properties,
functional groups, the initial biotransformation rules, and the rate
constants that were obtained under aerobic and anoxic condi-
tions. The SOM, an unsupervised neural network algorithm, was
chosen due to its ability for clustering and dimensionality
reduction with superior visualization of the input features15. In
addition, the RFC, a supervised algorithm, was adopted because of
its remarkable inference performance for tabular datasets16,17. The
RFC was utilized to classify the dataset depending on the input
features, i.e., the physicochemical properties, functional groups,
and the initial biotransformation rules. Hence, the objectives of
this study were to: (1) propose the appropriate clustering method
for MPs using clustering analysis, (2) determine marker constitu-
ents for each cluster aggregated by the SOM, (3) classify MPs using
the RFC based on physicochemical properties, functional groups,
and biotransformation rules, and (4) estimate a range of rate
constants for unlabeled MPs. The results suggest that this
approach provides a good framework for monitoring the fate of
MPs and can be used as an efficient and effective tool to further
reduce the monitoring overheads in WWTPs.

RESULTS AND DISCUSSION
Removal of micropollutants under aerobic and anoxic
conditions
Figure 1 shows the removal efficiency of 42 MPs after 24 h of
incubation. Regardless of the aerobic and anoxic conditions, the
removal efficiency of most MPs was less than 5% in the control

experiment. These findings suggest that abiotic processes such as
hydrolysis are unlikely to be involved in the transformation of
MPs18,19. Likewise, volatilization is not considered as the main
removal route, because the Henry’s constant of the MPs was
significantly low20. Conversely, adsorption was primarily relevant
within 1 h for selected MPs, which is in line with the results of
previous studies21,22. More than 30% (32–57%) of parabens
(methyl paraben, ethyl paraben, propyl paraben, and butyl
paraben), estrogens (estrone and estriol), diclofenac, and atorvas-
tatin was removed by sorption onto sludge. However, the removal
efficiency of most MPs through sorption was less than 14% (Fig. 1).
Distinct differences were observed in the biodegradation of

each MPs. For example, ibuprofen, naproxen, caffeine, metformin,
gemfibrozil, and acetaminophen were almost completely
removed under aerobic conditions (Fig. 1a). The removal of these
MPs primarily resulted from biodegradation, which is consistent
with previous findings21,23,24. Atorvastatin, parabens, and estro-
gens were also completely removed (Fig. 1a) through sorption and
biodegradation, accounting for 36–70% and 30–64% of the
removal, respectively. On the other hand, antibiotics (sulfathiazole,
sulfamethazine, sulfamethoxazole, trimethoprim, and lincomycin),
carbamazepine, atrazine, clofibric acid, and N,N-diethyl-meta-
toluamide were poorly removed (sorption: less than 5% and
biodegradation: up to 40%). Less removal of these MPs is
consistent with the findings of Ternes, et al.20 and Joss, et al.25;
this is mainly ascribed to less reactivity of the functional groups26.
Propranolol exhibited negative removal under aerobic condi-

tions (Fig. 1), most likely due to back-transformation of
propranolol and deconjugation27. Within 24 h, approximately
70–85% of atenolol, ranitidine, iopromide, cimetidine, and
gemfibrozil were removed mainly by biodegradation. The total
removal efficiency of diclofenac was approximately 74% (Fig. 1a).
However, sorption (47%) was more effective than biodegradation
(27%) for the removal of diclofenac. This is in line with the
previous studies demonstrating the sorption onto sludge is a

Fig. 1 Removal efficiency of MPs under aerobic and anoxic conditions. The sorption and biodegradation in the a aerobic and b anoxic
processes were separately represented. Negative removal is expressed as 0%.
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predominant route of diclofenac removal22,28,29. Perfluorinated
compounds were removed less efficiently (7.5–37.3%), except for
perfluoropentanoic acid (negatively removed). The biological
removal efficiencies of N-nitrosamines varied significantly, as
shown in Fig. 1a, with N-nitrosomorpholine (5.7%) and N-
nitrosodibutylamine (75%) exhibiting the lowest and highest
removal rates, respectively. The wide range of total removal
efficiencies of 12.6–79.4% (sorption: less than 6% and biodegrada-
tion: 5.7–75%) in this study is analogous to the results of previous
studies (>10–94%)30–32. Nitrosamines with acyclic groups, such as
N-nitrosodibutylamine, were more biodegradable than those with
alicyclic and morpholine groups31.
Metformin was almost completely biodegraded under anoxic

conditions, whereas MPs such as ranitidine, iopromide, and
acetaminophen were removed with varying degrees of efficiency
(62–85%). Also, parabens, estriol, and estrone were significantly
removed under anoxic conditions, most likely due to sorption (Fig.
1b). Biodegradation efficiency of β-blockers (atenolol, metoprolol,
and propranolol) and trimethoprim was 45% higher under anoxic
conditions than that under aerobic conditions. In contrast,
corrosion inhibitors (1-H-benzotriazole and 4-methyl-1H-benzo-
triazole), gemfibrozil, diclofenac, ibuprofen, naproxen, and caf-
feine were only marginally removed (7.9–28.6%). Alvarino et al.33

and Mazioti et al.34 reported that the degradation of these MPs
was only observed under aerobic conditions depending on the
activity of nitrifying bacteria. Perfluoropentanoic acid had a
negative removal efficiency in this study, while other MPs had
less than 35% removal efficiency via biodegradation under anoxic
conditions (Fig. 1b). The negative removal of perfluoropentanoic
acid could be resulted from the transformation of other
perfluorinated compounds present in the sludge samples35.
Overall, most results of batch experiments under both

conditions were consistent with previously reported results.
According to the Nash–Sutcliffe model efficiency coefficient
(NSE) results, the pseudo first-order degradation model can
predict the majority of biodegradation rate constants of MP
under aerobic and anoxic conditions except for perfluoropenta-
noic acid, perfluorobutanesulfonate, atrazine, and nitrosamines.
The kbio of MPs ranged from 0 to 2.3 L g−1 h−1 and 0 to 1.8 L g−1

h−1 under aerobic and anoxic conditions, respectively (Table 1). As
shown in Supplementary Fig. 1, however, most of the MPs showed
higher kbio values in the aerobic process than those in the anoxic
process. The sorption coefficients were very similar under both
aerobic (0–0.44 L gMLSS

−1) and anoxic conditions (0–0.5 L gMLSS
−1),

which agreed well with previously reported ranges25,28,36–40.

Machine learning models combining clustering and
classification
Machine learning models that combine clustering and classifica-
tion are proposed in this study (Fig. 2). The clustering analysis was
used to assign a label to unlabeled data that could be further used
during classification41. The dataset consisted of physicochemical
properties, functional groups, initial biotransformation rules, and
rate constants of 42 MPs (Supplementary Table 1). The dataset was
randomly divided into two parts: 29 MPs for the training and
validation (70% for cross-validation) datasets and 13 MPs for the
test (30%) dataset. It is noted that the abbreviations are used to
indicate clustering scenarios based on the physicochemical
properties and functional groups as PF and the initial biotrans-
formation rules as BT.

Clustering analysis and determination of marker constituents
The distance maps derived from the SOM are illustrated with
different colors according to the relative distance between each
neuron of the map (Figs. 3a and 4a). The MPs assigned closely in
the distance map filled with similar colors were interpreted as MPs
having analogous characteristics (Figs. 3b and 4b). The radius of

sectors represents the relative importance of each input feature to
cluster MPs. On the other hand, the MPs with remarkably different
features were in the separate neurons with dissimilar colors. The
solid lines determined by Ward’s method indicate the boundaries
dividing each cluster. The marker constituents among MPs are
indicated with superscripts (A) for aerobic and (AN) for anoxic
conditions, respectively (Figs. 3 and 4).

Clustering analysis based on physicochemical properties and
functional groups
Recent research has found that the fate of MPs is influenced by
physicochemical properties such as the octanol-water partition
coefficient and accessible functional moieties10,20,26. Hence, we
first assessed the suitability of physicochemical properties and
functional groups for clustering MPs (Fig. 3). Using Ward’s method,
MPs having similar input features were clustered into 11 clusters
with the lowest Davies–Bouldin index (DBI) in the PF scenario
(0.49).
Because nitrosamines commonly contain amine and amide

functional groups, they are clustered together as shown in the left
upper side of Fig. 3a, b. However, N-nitrodiphenylamine and N-
nitrosomorpholine were assigned in different clusters due to
having diphenylamine and morpholine as aromatic functional
group, respectively. Carbamazepine and N,N-diethyl-meta-tolua-
mide were also grouped together with N-nitrodiphenylamine and
N-nitrosomorpholine because they contain amine, amide, and
aromatic ring as functional groups. The MPs having nitrogen- and
sulfur-containing functional groups such as sulfathiazole, sulfa-
methazine, ranitidine, and cimetidine were assigned to one cluster
in the lower-left corner of Fig. 3a. This clustering result is line with
previous studies in which MPs with sulfonamide functional group
were aggregated in the same cluster14 and sulfamethazine and
sulfathiazole were closely located in the dendrogram on the basis
of biodegradation rate11. The parabens were clustered in the same
unit because of their high log Kow values and functional groups,
i.e., ester and aromatic ring. The long alkyl ester chain and high log
Kow value are the unique properties of parabens, which lead
readily to sorption and biodegradation42. Although estrogens do
not have an ester functional group in their structure, parabens and
estrogens were assigned in the same cluster due to their similarity
in log Kow value and having alcohol and aromatic ring as
functional groups (upper right corner of Fig. 3a, b). The MPs
located in the lower-right corner of Fig. 3a, b contain a halogen-
containing functional group in common. The perfluorohexanoic
acid and perfluoropentanoic acid were separately clustered from
clofibric acid and iopromide because of the fluorinated carbon
chain in their structure rather than the aromatic ring structure.
Similar clustering results can be found in the previous study in
which perfluorinated compounds were grouped in the same
cluster due to their fluorinated carbon chain structure43.
In summary, the clustering result represented in the SOM map

(Fig. 3a) was interpretable using the physicochemical properties of
each MP (Fig. 3b). In the figure, the MPs on the left side have
relatively low molecular weights or log Kow and consist of
nitrogen-containing functional groups (i.e., amine and amide)
compared with the MPs on the right side. The MPs having the
aromatic ring functional group were in a diagonal direction (lower
left to upper right), and the MPs with the chain structure were
positioned at each corner, in the upper left and lower right. Other
MPs containing sulfur and halogen atoms in their functional
groups aggregated in the clusters at the bottom of the distance
map. One limitation of the clustering result in this study was the
uneven distribution of MPs in each cluster due to the lack of
available MP data. This limitation should be overcome in future
studies by increasing the number of MPs included in the analysis.
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Clustering analysis based on biotransformation rules
Perfluorinated compounds, N-nitrosodimethylamine, and N-nitro-
sopyrrolidine were excluded in this section because their initial
biotransformation rules were not predictable using Eawag-PPS.
When the SOM clustered the MPs based on the BT scenario, the
algorithm generated 15 clusters (DBI= 0.87). The MPs, most
commonly following the 1–3 initial biotransformation rules, were
aggregated in the same cluster (Fig. 4). 1-H-benzotriazole was
grouped together with clofibric acid because its biotransformation

was mainly initiated by the aromatic ring dihydroxylation (bt0005)
(right middle area of Fig. 4a, b). Atenolol and iopromide were
aggregated in the same cluster, since the biodegradation of
atenolol and iopromide likely occurred through H-abstraction
from side chains (bt0002) and demethylation or dealkylation of
ether group (bt0023) (lower-left area of Fig. 4a, b). These results
were not consistent with the previous report demonstrating that
atenolol and 1-H-benzotriazole were tied to the same cluster
when using the elimination rates instead of the biotransformation
rule as input features43. Since sulfathiazole and sulfamethazine

Table 1. Sorption coefficient and biological reaction rate constant of MPs in aerobic and anoxic processes estimated through the dynamic modeling
approach.

Category Micropollutant Kd, aerobic
(L gMLSS

−1)
kbio, aerobic
(L g−1 h−1)

NSEaerobic Kd, anoxic
(L gMLSS

−1)
kbio, anoxic
(L g−1 h−1)

NSEanoxic

Antidiabetic Metformin 0.008 ± 0.012 0.122 ± 0.047 0.949 0.064 ± 0.009 0.086 ± 0.003 0.952

β-blocker Atenolol 0.019 ± 0.002 0.038 ± 0.007 0.895 0.033 ± 0.047 0.077 ± 0.002 0.940

Metoprolol 0.007 ± 0.011 0.004 ± 0.001 0.118 0.015 ± 0.004 0.007 ± 0.000 0.647

Propranolol 0.05 ± 0.024 0.000 ± 0.002 −0.041 0.024 ± 0.014 0.013 ± 0.001 0.276

H2-receptor blocker Cimetidine 0.018 ± 0.007 0.024 ± 0.003 0.901 0.012 ± 0.003 0.005 ± 0.000 0.501

Ranitidine 0.178 ± 0.001 0.087 ± 0.003 0.773 0.126 ± 0.029 0.019 ± 0.001 0.932

Antibiotic Lincomycin 0.015 ± 0.001 0.004 ± 0.000 0.553 0.019 ± 0.016 0.002 ± 0.000 0.614

Sulfathiazole 0.038 ± 0.006 0.008 ± 0.003 0.929 0.060 ± 0.031 0.003 ± 0.001 0.817

Sulfamethazine 0.012 ± 0.009 0.006 ± 0.002 0.834 0.023 ± 0.002 0.002 ± 0.001 0.677

Sulfamethoxazole 0.034 ± 0.005 0.007 ± 0.002 0.936 0.044 ± 0.007 0.001 ± 0.000 0.403

Trimethoprim 0.064 ± 0.006 0.004 ± 0.001 −0.662 0.088 ± 0.023 0.045 ± 0.001 0.944

Non-steroidal
anti-inflammatory drug

Acetaminophen 0.036 ± 0.012 0.165 ± 0.001 0.945 0.018 ± 0.001 0.048 ± 0.001 0.913

Diclofenac 0.303 ± 0.026 0.039 ± 0.008 0.603 0.300 ± 0.139 0.009 ± 0.002 0.619

Ibuprofen 0.052 ± 0.002 0.276 ± 0.033 0.853 0.022 ± 0.014 0.008 ± 0.001 0.591

Naproxen 0.023 ± 0.007 0.103 ± 0.034 0.760 0.050 ± 0.004 0.006 ± 0.001 0.655

Anticonvulsant Carbamazepine 0.046 ± 0.004 0.000 ± 0.001 −0.264 0.032 ± 0.001 0.002 ± 0.001 0.717

Anti-dyslipidemia agent Atorvastatin 0.187 ± 0.071 0.142 ± 0.020 0.225 0.128 ± 0.417 0.018 ± 0.004 0.575

Clofibric acid 0.010 ± 0.012 0.002 ± 0.001 0.670 0.000 ± 0.003 0.003 ± 0.001 −1.657

Gemfibrozil 0.065 ± 0.007 0.056 ± 0.016 0.883 0.040 ± 0.025 0.003 ± 0.002 0.568

X-ray contrast agent Iopromide 0.051 ± 0.017 0.048 ± 0.005 0.953 0.027 ± 0.012 0.025 ± 0.002 0.431

Corrosion inhibitor 1-H-benzotriazole 0.010 ± 0.021 0.019 ± 0.001 0.839 0.004 ± 0.004 0.005 ± 0.001 0.503

4-methyl-1H-benzotriazole 0.034 ± 0.002 0.005 ± 0.000 0.759 0.041 ± 0.001 0.002 ± 0.001 0.627

Others Caffeine 0.046 ± 0.015 0.165 ± 0.060 0.992 0.032 ± 0.005 0.003 ± 0.001 0.727

Preservative Methyl paraben 0.279 ± 0.001 0.132 ± 0.008 0.847 0.187 ± 0.369 0.140 ± 0.037 0.923

Ethyl paraben 0.155 ± 0.040 1.868 ± 0.064 0.762 0.208 ± 0.267 1.549 ± 0.043 0.957

Propyl paraben 0.210 ± 0.044 1.592 ± 0.367 0.831 0.197 ± 0.228 1.195 ± 0.244 0.916

Butyl paraben 0.439 ± 0.131 2.295 ± 0.109 0.811 0.266 ± 0.100 1.850 ± 0.051 0.897

Endocrine disruptor Estriol 0.349 ± 0.102 1.852 ± 0.409 0.888 0.505 ± 0.054 1.094 ± 0.422 0.925

Estrone 0.226 ± 0.327 0.169 ± 0.041 0.798 0.070 ± 0.402 0.029 ± 0.008 0.614

Pesticide Atrazine 0.004 ± 0.014 0.001 ± 0.000 −0.569 0.007 ± 0.027 0.001 ± 0.000 −0.951

Biocide N,N-diethyl-meta-toluamide 0.009 ± 0.022 0.003 ± 0.001 0.789 0.026 ± 0.009 0.001 ± 0.000 0.164

Perfluorinated
compound

Perfluoropentanoic acid 0.004 ± 0.007 0.000 ± 0.001 −1.259 0.020 ± 0.012 0.000 ± 0.001 −0.192

Perfluorobutanesulfonic acid 0.009 ± 0.015 0.004 ± 0.001 −2.229 0.035 ± 0.121 0.002 ± 0.001 −0.172

Perfluorohexanoic acid 0.001 ± 0.003 0.001 ± 0.001 0.615 0.005 ± 0.004 0.000 ± 0.001 −0.583

Perfluoroheptanoic acid 0.000 ± 0.011 0.003 ± 0.002 0.575 0.039 ± 0.022 0.001 ± 0.001 −0.403

Nitrosamine N-nitrosodimethylamine 0.023 ± 0.080 0.001 ± 0.001 −2.020 0.070 ± 0.096 0.001 ± 0.001 −0.499

N-nitrosoethylmethylamine 0.023 ± 0.077 0.001 ± 0.001 −2.562 0.071 ± 0.100 0.001 ± 0.001 −0.251

N-nitrosodiethylamine 0.023 ± 0.078 0.002 ± 0.001 −2.330 0.053 ± 0.086 0.001 ± 0.001 −0.275

N-nitrodiphenylamine 0.018 ± 0.062 0.006 ± 0.002 −2.436 0.004 ± 0.029 0.000 ± 0.001 −0.185

N-nitrosopyrrolidine 0.019 ± 0.095 0.002 ± 0.001 −2.195 0.082 ± 0.111 0.006 ± 0.001 −0.088

N-nitrosomorpholine 0.025 ± 0.079 0.001 ± 0.001 −1.246 0.033 ± 0.069 0.001 ± 0.001 −0.219

N-nitrosodibutylamine 0.016 ± 0.103 0.033 ± 0.002 0.743 0.014 ± 0.002 0.002 ± 0.002 −0.066
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contain a sulfonamide functional group, which can be biode-
graded through hydrolysis and bond-cleavage in sulfonamide
group (bt0144), they were aggregated together in the same
cluster. This is in line with a previous study showing that the MPs
having the sulfonamide functional group were aggregated in the
same cluster10,14. Among the nitrosamine compounds, N-nitroso-
diethylamine and N-nitrosomethylethylamine, biodegradation
mainly resulted from the monohydroxylation of methyl group
(bt0334), and hence were aggregated in one cluster.

Estimation of rate constants using the proposed algorithms
and markers
The feasibility of the proposed algorithms and derived marker
constituents was evaluated by classifying unlabeled MPs, followed
by estimating the range of rate constants for each MP. In this
study, the role of a marker is to provide representative information
regarding the rate constants of MPs in each cluster. Therefore, the
marker was designated as an MP having a minimum Euclidean
distance from the mean of the rate constants in each cluster. For
example, when an unlabeled MP is classified in a specific cluster,
the ranges of its rate constants can be calculated using the rate
constants of the markers, Kd;m and kbio;m. The rate constants for
unlabeled MPs, Kd;u and kbio;u, can have the values in the range as
follows:

Kd;m � NσKd � Kd;u � Kd;m þ NσKd (1)

kbio;m � Nσkbio � kbio;u � kbio;m þ Nσkbio (2)

where σKd and σkbio indicate the standard deviation of sorption
coefficient and biodegradation rate constant obtained from the
MPs in each cluster, respectively. N was set to one, two, and three
in this study. The estimation accuracy was calculated by counting
the numbers of MPs that lie within the range calculated using
Eqs. (1) and (2) (Table 2).
In the preliminary simulation to design this study, a random

forest regressor (RFR) was solely employed to directly predict the
degradation rate constants (Supplementary Fig. 2). The coefficient
of determination (R2) for degradation rate constants in the test
step was lower than 0.5 regardless of input features and operating
conditions (Supplementary Figs. 3 and 4). An overfitting problem
that the prediction accuracy for the training step was significantly
higher (R2: 0.78–0.90) than the test step (R2: −0.08–0.45) occurred
in the RFR model. However, the machine learning approach
combining SOM and RFC performed better than the RFR model
only; hence, the SOM and RFC were utilized in this study. In the
training and validation steps, the classification accuracy (0.75) and
f1-score (0.61) of the PF scenario were significantly higher than
those of the BT scenario (accuracy: 0.43 and f1-score: 0.32). In the
test step, with respect to the aerobic condition, the algorithm
using the PF scenario was able to estimate the range for rate
constants with an accuracy of 0.38 using one standard deviation
and marker’s rate constants of each cluster. In contrast, one
standard deviation was insufficient to estimate the range of rate
constants in the BT scenario (0.10). The best estimation accuracy
of the BT scenario (0.40) was relatively lower than that of the PF
scenario when the estimations were made within three standard
deviations (0.77). Similar to the aerobic condition, under the

Fig. 2 Schematic diagram of the combination of clustering and classification algorithms. The number of micropollutants (MPs) used in
each step is noted in the diagram.
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anoxic condition, the estimation accuracy for the PF scenario
(0.46–0.77) showed better estimation performance compared with
that of the BT scenario (0.30–0.40). Collectively, the PF scenario
showed higher performance in the classification of MPs and
estimation of rate constants compared with the BT scenario. The
better clustering results can explain this relatively higher
classification and estimation accuracies of the PF scenario than
the BT scenario. For example, the DBI value for the PF scenario
(0.49) was only half of the DBI value for the BT scenario (0.87),
implying that the clustering using the PF scenario was more well-
organized than that of the BT scenario.

Applicability of the proposed algorithm to different microbial
community data
We further conducted simulations using the previously reported
aerobic experimental data to evaluate the applicability of this
proposed machine learning algorithm to different microbial
community data10. In this case, the dataset consisted of 42 MPs,
mainly degraded through biotransformations but not sorptions.
The proposed algorithm was retrained using physicochemical
properties, functional groups, and biotransformation to estimate
the rate constants of MPs in the reported datasets. As expected,
the proposed algorithm was able to classify MPs and estimate the
rate constants of MPs in the different microbial community.
Interestingly, in this case, the BT scenario (0.72) showed a slightly
higher classification accuracy than that of the PF scenario (0.62).
Consequently, the estimation performance using the BT scenario
(0.69) was also slightly higher than that of the PF scenario (0.62)
(Supplementary Table 2). This superior estimation accuracy under
the BT scenario is likely because the selected MPs in the literature
datasets follow the rules of biotransformation well, as stated10.
However, the use of the biotransformation rules only as input

features led to a lower estimation performance of rate constants
compared with the PF scenario for our experimental datasets. This
can be ascribed to the fact that the sorption is indirectly counted
under the PF scenario, which has considered the physicochemical
properties and functional groups of MPs but not under the BT
scenario. As a result, the estimation of rate constants could not be
precisely conducted under the BT scenario.

Comparison of model performances with previous studies
The proposed algorithm exhibited a comparable classification
performance and superior estimation accuracy of MPs when
estimating the range of rate constants compared to the ones
proposed by previous studies. For example, a previous model
based on meta-analysis accounted for only 17% of the variability
in the removal efficiencies of the targeted MPs44, which is lower
than the performance of the PF scenario under the aerobic
condition within one standard deviation (0.38). In another study
employing hierarchical clustering and multivariable analysis, the
estimation accuracy for the complete dataset was only 0.19 owing
to the unpredictable characteristics of biodegradation14. A recent
study proposed an RFC to classify MPs into two classes (fast or
slow biotransformation) with classification accuracies of 0.95 for
the predicted biotransformation rules and 0.78 for the observed
biotransformation rules45. This classification accuracy is similar to
the present study. Importantly, in this study, a direct estimation of
the range of rate constants of unlabeled MPs was possible.
However, the previous study could only classify whether the MPs
were biodegraded slowly or rapidly.
Overall, the superior estimation accuracy of this proposed

machine learning algorithm suggested two noteworthy findings.
First, the markers represented each cluster successfully, particu-
larly when the physicochemical properties and functional groups

Fig. 3 Clustering results for physicochemical properties and functional groups of MPs. a Distance between neighboring map units and
clustering boundary and b weight vectors that represent the importance of each feature to organize the map. The color bar indicates the
distance between neighboring map units.
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of each MP were employed during the model training. Second, the
markers derived from the proposed algorithm were used to
estimate the range of rate constants for unlabeled MPs in the test
dataset with relatively high accuracy, using only their physico-
chemical properties and functional groups as input features. In
summary, the proposed machine learning approach could be
employed to estimate the sorption and degradation rate of
unlabeled and emerging MPs based only on the physicochemical
properties and functional groups rather than measuring time-
course change of their concentration to estimate the fate of MPs.
The proposed machine learning approach trained with sufficient
process operational and experimental data could reduce the labor
and expenses required for monitoring MPs. Thus, monitoring only
the marker MP could reduce the cost of measuring each MP
concentration. As with other machine learning techniques, one
important prerequisite for successfully applying this machine
learning model is to secure sufficient data to train the model. With
sufficient data, the grouping and positioning of MPs with SOM
could become more refined while improving the accuracy of
predictions with RFCs.

METHODS
The details of the activated sludge, reagents, and chemicals used
in this study are provided in the Supplementary Information (See
Supplementary Note 1). Unless otherwise noted, all experiments
were conducted using synthetic wastewater (SyWW). The detailed
composition of SyWW is presented in Supplementary Table 3.

Batch experiments
The biodegradation of 42 MPs was evaluated under aerobic and
anoxic redox conditions. These MPs were chosen because of their
frequency of occurrence, persistence, and negative impact on
aquatic life. The agitated batch reactor setups are presented in
Supplementary Note 2 and Supplementary Fig. 5. Approximately
2.2 L SyWW with 0.8 L activated sludge was filled in 3 L batch
reactors. A cocktail of 42 MPs was spiked into the reactors with a
final concentration of 0.1 mg L−1. The concentration values of
mixed liquor suspended solids (MLSS) and mixed liquor volatile
suspended solids (MLVSS) were maintained at 3 g L−1 and
1.8 g L−1 in all the experiments, respectively. The pH and the
water temperature were kept at pH= 7 and 22 °C, respectively,
throughout the experiment. An 11mL aliquot of the sample
solution was collected from the reactors at the following periods:
0, 10, 20, and 30min and 1, 2, 4, 8, 12, and 24 h. Control
experiments without sludge were also performed to verify abiotic
transformation of MPs with a sampling interval of 0 and 24 h. To
investigate the adsorption effect on their removal (sterile control),
the samples from the reactor spiked with sodium azide (3 g L−1) to
suppress the microbial activity were collected at 0, 10, 20, 30 min,
and 1 h. Prior to analysis, all samples were filtered using a 0.2 μm
syringe filter (Whatman), fortified with internal standards
(50 ngmL−1), and immediately stored in a freezer at −20 °C.

Analysis of micropollutants
Nitrosamines were analyzed using gas chromatography coupled
to low-resolution mass spectrometry (GC-LRMS,6890 N GC system,

Fig. 4 Clustering results for initial biotransformation rules of MPs. a Distance between neighboring map units and clustering boundary and
b weight vectors. The initial biotransformation rules for each MP are presented in Supplementary Table 1. The color bar indicates the distance
between neighboring map units.
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Agilent Technologies, USA). The details of the procedure and
validation of the GC-LRMS method have been reported else-
where46. Thirty-five additional MPs were monitored using an ultra-
high performance liquid chromatography (UHPLC) Vanquish
system (Thermo Scientific, San Jose, USA). The system consisted
of a cooling auto-sampler, column oven enabling temperature
control, ultra-high pressure solvent delivery pump, and automatic
degasser. Chromatographic separations of the samples were
performed using a Cortecs C18 column (100 × 2.1 mm, 1.6 μm,
Waters Co., Milford, MA, USA). The column temperature was set at
45 °C, and the injection volume was 3 μL with a flow rate of
0.3 mLmin−1. The mobile phases included 0.1% hydrofluoric acid
in high-performance liquid chromatography (HPLC) grade water
(Solvent A) and methanol (Solvent B). The gradient elution
consisted of 0–0.5 min, 40–70% B, 0.5–6.5 min, 70–100% B and a
1min hold time, followed by a 4min re-equilibration to the
starting conditions. The internal standards were used for
quantification of analytes and a ten-point calibration curve was
constructed with a concentration range of 0.1 to 100 ngmL−1.
Details of the optimization and validation of the UHPLC-MS/MS
methods are described in Supplementary Note 3, Supplementary
Tables 4 and 5.

Pseudo first-order degradation models
Based on the results obtained from lab-scale batch experiments, a
pseudo first-order degradation kinetic model (Supplementary
Note 4) has been frequently used for describing the fate of
MPs25,38,47. The pseudo first-order degradation model in this study
assumed fast sorption that reached the equilibrium condition
immediately due to observation of instant reduction of soluble MP
concentration. Other degradation/removal mechanisms such as
volatilization were not considered. The performance of the model
was evaluated using the NSE (Supplementary Note 5). Within the
scope of this study, the pseudo first-order degradation model
considering kbio and Kd can effectively describe the kinetics of MPs.

Machine learning approaches using clustering and
classification for micropollutants
In Step 1, the SOM, followed by Ward’s method, was employed in
the training and validation datasets to cluster MPs in the reduced
dimension, mapping high-dimensional data onto a two-
dimensional grid. Ward’s method draws the decision boundary
to effectively separate clusters generated by SOM (Supplementary
Note 6). The optimum number of clusters was calculated by
evaluating the Davies–Bouldin index (DBI) (Supplementary Note
7). Step 1 aims to assign a label to MPs whose appropriate
grouping rules do not yet exist. The MPs in the same cluster were
considered to have similar functional groups or biodegradation

rules. The labels derived in this step were used to train the
classification algorithm in Step 2. The marker for each cluster was
determined after verifying the number of clusters having a
minimum DBI. The marker MPs are the representative MP of each
cluster, which were used in Step 3 to estimate the degradation
rate constants of the unlabeled MP in the test dataset. Two
clustering scenarios were designed to find the proper input
features for clustering MPs: clustering based on the physicochem-
ical properties and functional groups (e.g., octanol-water parti-
tioning coefficient, ether, ester, and amine functional groups) (see
more information provided in Supplementary Table 1) and the
initial biotransformation rules predicted from Eawag-PPS as
presented in Supplementary Table 112,13.
In Step 2, the RFC was used to establish a classification

algorithm predicting labels assigned to the training and validation
datasets in the clustering (in Step 1). The input features, i.e., the
physicochemical properties, functional groups, and the initial
biotransformation rules, used in clustering were also employed to
classify MPs to each label. Cross-validation with a five-fold size was
conducted to evaluate the classification performance. The
clustering scenario with the better classification accuracy and f1-
score (Supplementary Note 9) was chosen as the best clustering
scenario for the machine learning model.
In Step 3, the trained model (trained SOM-WARD-RFC model in

Fig. 2) was utilized to classify the unlabeled MPs. When the trained
model classified the unlabeled MP in the test dataset to the
established cluster in Step 1, the classified MP could be considered
to have similar degradation properties to other MPs in the same
cluster. The markers in each cluster were used to estimate the
range of rate constants for unlabeled MPs using Eqs. (1) and (2).
Since the unlabeled MPs in the test dataset were completely
separated from the MPs in the train and validation dataset, there
was no possibility that the model had previewed the data used in
the test step. The specific operation conditions regarding the SOM
and RFC mentioned in this section are given in Supplementary
Note 6–9. In this study, all simulations were performed using
Python 3.7 and the clustering was conducted using the SOM from
MiniSOM toolbox version 2.3.048. Ward’s method and the RFC from
Scikit-learn version 1.0 were used to draw decision boundaries and
classify MPs depending on input features, respectively49.

DATA AVAILABILITY
All data are available in the manuscript or the supplementary information.

CODE AVAILABILITY
The underlying code for this study is not publicly available for proprietary reasons.

Table 2. Performance of clustering (DBI) and classification (accuracy, f1-score, precision, and recall) approaches and estimation performance of rate
constants range using markers for each clustering scenario.

Process Input feature DBI Accuracy f1-score Precision Recall Estimation
accuracy (N= 1)

Estimation
accuracy (N= 2)

Estimation
accuracy (N= 3)

Aerobic Physicochemical properties and
functional groups

0.488 0.75
(0.15)

0.61
(0.24)

0.59
(0.24)

0.65
(0.23)

0.38 0.69 0.77

Biotransformation rule 0.872 0.43
(0.16)

0.32
(0.13)

0.31
(0.14)

0.33
(0.11)

0.10 0.20 0.40

Anoxic Physicochemical properties and
functional groups

0.488 0.75
(0.15)

0.61
(0.24)

0.59
(0.24)

0.65
(0.23)

0.46 0.70 0.77

Biotransformation rule 0.872 0.43
(0.16)

0.32
(0.13)

0.31
(0.14)

0.33
(0.11)

0.30 0.40 0.40

The standard deviation of classification performance is mentioned in the parentheses. The estimation performance was compared with different N values,
deciding the estimation range of rate constants in Eqs. (1) and (2).

S.J. Lim et al.

8

npj Clean Water (2023)    69 Published in partnership with King Fahd University of Petroleum & Minerals



Received: 2 January 2023; Accepted: 16 October 2023;

REFERENCES
1. Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global

understanding of chemical pollution: a first comprehensive analysis of national
and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

2. Patel, M. et al. Pharmaceuticals of emerging concern in aquatic systems: chem-
istry, occurrence, effects, and removal methods. Chem. Rev. 119, 3510–3673
(2019).

3. Eggen, R. I. L., Hollender, J., Joss, A., Schärer, M. & Stamm, C. Reducing the
discharge of micropollutants in the aquatic environment: the benefits of
upgrading wastewater treatment plants. Environ. Sci. Technol. 48, 7683–7689
(2014).

4. Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic
environment and their fate and removal during wastewater treatment. Sci. Total
Environ. 473-474, 619–641 (2014).

5. Rout, P. R., Zhang, T. C., Bhunia, P. & Surampalli, R. Y. Treatment technologies for
emerging contaminants in wastewater treatment plants: a review. Sci. Total
Environ. 753, 141990 (2021).

6. Buerge, I. J., Kahle, M., Buser, H. R., Müller, M. D. & Poiger, T. Nicotine derivatives in
wastewater and surface waters: application as chemical markers for domestic
wastewater. Environ. Sci. Technol. 42, 6354–6360 (2008).

7. Tran, N. H., Li, J., Hu, J. & Ong, S. L. Occurrence and suitability of pharmaceuticals
and personal care products as molecular markers for raw wastewater con-
tamination in surface water and groundwater. Environ. Sci. Pollut. Res. 21,
4727–4740 (2014).

8. Buerge, I. J., Poiger, T., Müller, M. D. & Buser, H. R. Caffeine, an anthropogenic
marker for wastewater contamination of surface waters. Environ. Sci. Technol. 37,
691–700 (2003).

9. Buerge, I. J., Poiger, T., Müller, M. D. & Buser, H. R. Combined sewer overflows to
surface waters detected by the anthropogenic marker caffeine. Environ. Sci.
Technol. 40, 4096–4102 (2006).

10. Achermann, S. et al. Trends in micropollutant biotransformation along a solids
Retention time gradient. Environ. Sci. Technol. 52, 11601–11611 (2018).

11. Desiante, W. L., Minas, N. S. & Fenner, K. Micropollutant biotransformation and
bioaccumulation in natural stream biofilms. Water Res. 193, 116846 (2021).

12. Ellis, L. B. & Wackett, L. P. Use of the University of Minnesota Biocatalysis/Biode-
gradation Database for study of microbial degradation. Micro. Inf. Exp. 2, 1 (2012).

13. Ellis, L. B., Gao, J., Fenner, K. & Wackett, L. P. The University of Minnesota pathway
prediction system: predicting metabolic logic. Nucleic Acids Res. 36, W427–W432
(2008).

14. Wang, Y., Fenner, K. & Helbling, D. E. Clustering micropollutants based on initial
biotransformations for improved prediction of micropollutant removal during
conventional activated sludge treatment. Environ. Sci. Water Res. Technol. 6,
554–565 (2020).

15. Kohonen, T. Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013).
16. Shwartz-Ziv, R. & Armon, A. Tabular data: deep learning is not all you need. Inf.

Fusion 81, 84–90 (2022).
17. Ullah, Z., Yoon, N., Tarus, B. K., Park, S. & Son, M. Comparison of tree-based model

with deep learning model in predicting effluent pH and concentration by
capacitive deionization. Desalination 558, 116614 (2023).

18. Williams, M., Du, J., Kookana, R. & Azzi, M. In Biodegradation, hydrolysis and
photolysis testing of nitrosamines in aquatic systems, 1–30 (Commonwealth Sci-
entific and Industrial Research Organisation, 2011).

19. Bergheim, M., Gieré, R. & Kümmerer, K. Biodegradability and ecotoxicitiy of tra-
madol, ranitidine, and their photoderivatives in the aquatic environment. Environ.
Sci. Pollut. Res. 19, 72–85 (2012).

20. Ternes, T. A. et al. A rapid method to measure the solid-water distribution
coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water
Res. 38, 4075–4084 (2004).

21. Park, J., Yamashita, N., Wu, G. & Tanaka, H. Removal of pharmaceuticals and
personal care products by ammonia oxidizing bacteria acclimated in a mem-
brane bioreactor: contributions of cometabolism and endogenous respiration.
Sci. Total Environ. 605-606, 18–25 (2017).

22. Da Silva, T. H. G., Furtado, R. X. S., Zaiat, M. & Azevedo, E. B. Tandem anaerobic-
aerobic degradation of ranitidine, diclofenac, and simvastatin in domestic sew-
age. Sci. Total Environ. 721, 137589 (2020).

23. Joss, A., Andersen, H., Ternes, T., Richle, P. R. & Siegrist, H. Removal of estrogens in
municipal wastewater treatment under aerobic and anaerobic conditions: con-
sequences for plant optimization. Environ. Sci. Technol. 38, 3047–3055 (2004).

24. Tisler, S. & Zwiener, C. Aerobic and anaerobic formation and biodegradation of
guanyl urea and other transformation products of metformin. Water Res. 149,
130–135 (2019).

25. Joss, A. et al. Biological degradation of pharmaceuticals in municipal wastewater
treatment: proposing a classification scheme. Water Res. 40, 1686–1696 (2006).

26. Cooper, M. M., Elzerman, A. W. & Lee, C. M. Teaching chemistry in the new
century: environmental chemistry. J. Chem. Educ. 78, 1169–1169 (2001).

27. Brown, A. K., Ackerman, J., Cicek, N. & Wong, C. S. Insitu kinetics of human
pharmaceutical conjugates and the impact of transformation, deconjugation, and
sorption on persistence in wastewater batch bioreactors. Environ. Pollut. 265,
114852 (2020).

28. Radjenović, J., Petrović, M. & Barceló, D. Fate and distribution of pharmaceuticals
in wastewater and sewage sludge of the conventional activated sludge (CAS) and
advanced membrane bioreactor (MBR) treatment. Water Res. 43, 831–841 (2009).

29. Fan, H., Li, J., Zhang, L. & Feng, L. Contribution of sludge adsorption and bio-
degradation to the removal of five pharmaceuticals in a submerged membrane
bioreactor. Biochem. Eng. J. 88, 101–107 (2014).

30. Krauss, M., Longrée, P., Dorusch, F., Ort, C. & Hollender, J. Occurrence and removal
of N-nitrosamines in wastewater treatment plants. Water Res. 43, 4381–4391
(2009).

31. Wijekoon, K. C. et al. Removal of N-nitrosamines by an aerobic membrane bior-
eactor. Bioresource Technol. 141, 41–45 (2013).

32. Brakstad, O. G. et al. Biotransformation in water and soil of nitrosamines and
nitramines potentially generated from amine-based CO2 capture technology. Int.
J. Greenh. Gas. Control 70, 157–163 (2018).

33. Alvarino, T., Suarez, S., Lema, J. M. & Omil, F. Understanding the removal
mechanisms of PPCPs and the influence of main technological parameters in
anaerobic UASB and aerobic CAS reactors. J. Hazard. Mater. 278, 506–513 (2014).

34. Mazioti, A. A., Stasinakis, A. S., Gatidou, G., Thomaidis, N. S. & Andersen, H. R.
Sorption and biodegradation of selected benzotriazoles and hydro-
xybenzothiazole in activated sludge and estimation of their fate during waste-
water treatment. Chemosphere 131, 117–123 (2015).

35. Loganathan, B. G., Sajwan, K. S., Sinclair, E., Senthil Kumar, K. & Kannan, K. Per-
fluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment
facilities in Kentucky and Georgia. Water Res. 41, 4611–4620 (2007).

36. Urase, T. & Kikuta, T. Separate estimation of adsorption and degradation of
pharmaceutical substances and estrogens in the activated sludge process. Water
Res. 39, 1289–1300 (2005).

37. Abegglen, C. et al. The fate of selected micropollutants in a single-house MBR.
Water Res. 43, 2036–2046 (2009).

38. Xue, W. et al. Elimination and fate of selected micro-organic pollutants in a full-
scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for
municipal wastewater reclamation. Water Res. 44, 5999–6010 (2010).

39. Stevens-Garmon, J., Drewes, J. E., Khan, S. J., McDonald, J. A. & Dickenson, E. R.
Sorption of emerging trace organic compounds onto wastewater sludge solids.
Water Res. 45, 3417–3426 (2011).

40. Fernandez-Fontaina, E., Pinho, I., Carballa, M., Omil, F. & Lema, J. M. Biode-
gradation kinetic constants and sorption coefficients of micropollutants in
membrane bioreactors. Biodegradation 24, 165–177 (2013).

41. Chakraborty, T. EC3: Combining clustering and classification for ensemble
learning. Proc. IEEE Int. Conf. Data Min. ICDM 2017, 781–786 (2017).

42. Lu, J., Li, H., Tu, Y. & Yang, Z. Biodegradation of four selected parabens with
aerobic activated sludge and their transesterification product. Ecotoxicol. Environ.
Saf. 156, 48–55 (2018).

43. Gallé, T. et al. Large-scale determination of micropollutant elimination from
municipal wastewater by passive sampling gives new insights in governing
parameters and degradation patterns. Water Res. 160, 380–393 (2019).

44. Douziech, M. et al. Quantifying variability in removal efficiencies of chemicals in
activated sludge wastewater treatment plants – a meta-analytical approach.
Environ. Sci. Process. Impacts 20, 171–182 (2018).

45. Rich, S. L., Zumstein, M. T. & Helbling, D. E. Identifying functional groups that
determine rates of micropollutant biotransformations performed by wastewater
microbial communities. Environ. Sci. Technol. 56, 984–994 (2022).

46. Kim, G. A., Son, H. J., Kim, C. W. & Kim, S. H. Nitrosamine occurrence at Korean
surface water using an analytical method based on GC/LRMS. Environ. Monit.
Assess. 185, 1657–1669 (2013).

47. Pomiès, M., Choubert, J. M., Wisniewski, C. & Coquery, M. Modelling of micro-
pollutant removal in biological wastewater treatments: a review. Sci. Total
Environ. 443, 733–748 (2013).

48. Giuseppe, V. MiniSom: minimalistic and NumPy-based implementation of the Self
Organizing Map. https://github.com/JustGlowing/minisom/ (2018). Accessed on
21 March 2022.

49. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

S.J. Lim et al.

9

Published in partnership with King Fahd University of Petroleum & Minerals npj Clean Water (2023)    69 

https://github.com/JustGlowing/minisom/


ACKNOWLEDGEMENTS
This study was supported by the Korea Environment Industry & Technology Institute
through the “Project for developing innovative drinking water and wastewater
technologies,” funded by the Korea Ministry of Environment [Grant No.
2019002710010], and the National Research Foundation of Korea (NRF) grant,
funded by the Korean government (MSIT) [No. 2021R1C1C2005643].

AUTHOR CONTRIBUTIONS
The manuscript was written with the contributions of all authors. All authors have
read and agreed to the published version of the manuscript. Each author’s
contributions are as follows: S.J.L.: Conceptualization, Methodology, Data analysis,
Writing- Original draft, Co-first author J.S.: Conceptualization, Methodology, Writing-
Original draft, Co-first author M.G.S.: Conceptualization, Data curation, Validation,
Writing- Original draft. J.L.: Data curation, Validation, Reviewing. W.W.E.: Data
curation, Validation. D.-H.L.: Data curation, Validation. E.J.: Data curation, Validation.
S.H.C.: Writing- Reviewing and Editing. Y.L.: Writing- Reviewing and Editing. M.S.:
Supervision, Funding acquisition, Writing- Reviewing and Editing, Co-corresponding
author S.W.H.: Supervision, Resources, Funding acquisition, Writing- Reviewing and
Editing, Co-corresponding author.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41545-023-00282-6.

Correspondence and requests for materials should be addressed to Moon Son or
Seok Won Hong.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

S.J. Lim et al.

10

npj Clean Water (2023)    69 Published in partnership with King Fahd University of Petroleum & Minerals

https://doi.org/10.1038/s41545-023-00282-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Clustering micropollutants and estimating rate constants of sorption and biodegradation using machine learning approaches
	Introduction
	Results and discussion
	Removal of micropollutants under aerobic and anoxic conditions
	Machine learning models combining clustering and classification
	Clustering analysis and determination of marker constituents
	Clustering analysis based on physicochemical properties and functional�groups
	Clustering analysis based on biotransformation�rules
	Estimation of rate constants using the proposed algorithms and markers
	Applicability of the proposed algorithm to different microbial community�data
	Comparison of model performances with previous studies

	Methods
	Batch experiments
	Analysis of micropollutants
	Pseudo first-order degradation�models
	Machine learning approaches using clustering and classification for micropollutants

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




